

ELECTRICITY!

$$
x^{2}
$$

$$
6
$$

On

How big is a billion?

- If a billion kids made a human tower, they would stand up past the moon.
- If you sat down to count from one to one billion, you would be counting for 95 years.
- A billion seconds ago it was 1959.

0.63 miles (1.01 km)

Higher than the
"world's tallest building"

Let's go atomic

Equal number protons and electrons

$\dagger \rightarrow \leftarrow-$ Attract

$$
\begin{aligned}
& 1 \text { I I I I } \\
& \text { I I I I I I I } \\
& \text { Insulator } \\
& +++++\quad+\quad+ \\
& ++++++
\end{aligned}
$$

Voltage

The potential of electricity to move.

Voltage can also be though of as pressure.

Source \& Load
(everything must be consumed!)

Current

The flow of electricity.

SHORT
 CIRCUIT!!

Resistance

Duh.

Georg Ohm (1800s)

Ohm's Law!!

$$
v=i^{\star} r
$$

Ohm's Law!!

voltage=current*resistance

Ohm's Law!!

voltage=current*resistance

current $=$ voltage $/$ resistance

Ohm's Law!!

voltage=current*resistance
current $=$ voltage/resistance
resistance $=$ voltage/current

OHM'S LAW!!

$$
v=i^{*} r
$$

voltage is measured in Volts

current is measured in Amperes (Amps)

resistance is measured in Ohms

Circuit

Power source \& components that convert energy.

Huh?

Sensors

Take one type of energy and turn it into electricity (transduction).

Actuators

Take electricity and turn it into another form of energy.

Physical computing is a lot about understanding what energy from people we can measure, how to measure it, and then what to do with that info.

AC DC?

Direct Current Alternating Current

Can I hurt myself???

Let's try it out!

Parts

Schematics

Power \& Ground

5 V

Resistor

Switch

LED (Light Emitting Diode)

Series

Parallel

Button

Button Series

fritzing
Button Parallel

